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Abstract--In this paper, we show how to design three-layer feedforward neural networks with sigma-pi units in the 
hidden layer in order to perform perfectly on regular training sets. We obtain real-time design schemes based on 
massively parallel sampling and induced by so-called hyperbolic cardinal translation-type interpolation operators. 
The real-time nature of our strategy is due to the fact that in the neural network language our approach is nothing 
else but averv general and efficient one-shot learning scheme. Moreover, because of the very special hyperbolic 
structure of our sigma-pi units we do not have the usual dramatic increase of parameters and weights that in general 
happens in case of higher order networks. The final networks are of manageable complexity and may be applied to 
multigroup discriminant problems, pattern recognition, and image processing. In detail, the XOR-problem and a 
special multigroup discriminant problem are discussed at the end of the paper. 
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1. INTRODUCTION 

Since Minsky and Papert's results (1969) it is well- 
known that usual feedforward neural networks with 
first-order units can implement only linearly separable 
mappings. One possibility to drop this limitation is to 
use multilayer networks where so-called hidden units 
can combine the outputs of previous units and so give 
rise to nonlinear mappings (cf. Rumelhart & Mc- 
Clelland, 1986; Irie & Miyake, 1988; Funahashi, 1989; 
Hornik, Stinchcombe, & White, 1989; Cybenko, 1989; 
Chui & Li, 1992, 1993; Light, 1992). The other way to 
overcome the restriction to linear maps is to introduce 
higher order units, sigma-pi units, to model nonlinear 
dependences (cf. Rumelhart & McClelland, 1986; Giles 
& Maxwell, 1987; Giles, Griffin, & Maxwell, 1988; 
Gorse & Taylor, 1991; Gorse, Taylor, & Clarkson, 1993; 
Lenze, 1992, 1993). Both modifications imply that the 
complexity of the networks increase dramatically and 
that standard training strategies (variants of back prop- 
agation, gradient method, steepest descent, etc.) even 
for small to medium sized problems often fail or are 
at least very time consuming (cf. Hecht-Nielsen, 1990; 
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Saarinen, Bramley, & Cybenko, 1991 a,b). Therefore, 
it should be of some interest to have real-time ad hoc 
strategies for adjusting the network parameters properly 
at least in the case of special situations. In the following, 
such a general one-shot learning scheme will be pre- 
sented for three-layer feedforward neural networks with 
special hyperbolic sigma-pi units in the hidden layer 
and regular training sets. 

2. NOTATION AND RESULTS 

Let n E I~1 be given and a = (a~, a2 . . . . .  a,), b = (bl, 
b2 . . . . .  b,) E •" with a < b (i.e., ak < bk, 1 <_- k <- n) 
the endpoints of the interval [a, b] C R', 

[ a , b ] : = { x E R ' l a k < X k < b k ,  l<_k<n} .  (1) 

By means of a standard translation argument we may 
assume that the point a ~ R" is always equal to the 
origin, that is, without loss of generality we have a = 
0. Going ahead, we choose J1, J2 . . . . .  J ,  E N and 
define h @ R" componentwise by 

bk 
hk:=-; -, 1 < k ~ n .  (2) 

Jk 

Now, the interval [0, b] has a regular grid with grid 
points 
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1286 B. Lenze 

hj := (h j i ,  h2j2 . . . . .  h,j ,)  E [0, b], (3) 

O < j k < J k ,  1 < - k < n ,  

where j := (/1, J2 . . . . .  j , )  and J := (Jl ,  J2 . . . . .  J , ) .  
Next, at each grid point  hi, 0 < j < J ,  there may  be 
given a real value f ( h j )  E R that  we may  assume to 
come from some underlying function f." [0, b] --* R. 
Now, the prob lem is to design a neural  network that  is 
able to associate with each grid point  h i the right value 
f (h j ) .  To solve this p rob lem we proceed in two steps: 
in a first step, we define so-called hyperbolic cardinal  
t ranslat ion-type interpolation operators  that  formally 
interpolate the data set. In a second step, we show how 
these operators can be interpreted as realizations of  
usual three-layer feedforward sigma-pi neural networks. 

To do the first step, we first o f  all need some further 
definitions that  may  already be found in Lenze (1989, 
1992). For arbi trary c, d E R" with c < d let 

C o r [ c , d ]  : = { x E R n I X k = C k V X k = d k ,  1 < k < n }  (4) 

be the set of  corners of  the interval [c, d]. Moreover, let 

"y(x, c) := # { k E  {1, 2 . . . . .  n}lxk = ck}, 

x E C or [c, d]. (5) 

In (5) ~ denotes the n u m b e r  of  distinct e lements  of  the 
set under  consideration and n - 3,(x, c) is nothing else 
but  the well-known H a m m i n g  distance of  x and c (cf. 
Hecht-Nielsen,  1990: 43, for example). Now, for a given 
function f [c, d] --* ~ the so-called corresponding in- 
terval function or i terated difference Af of  f a t  [c, d] is 
defined by 

Af[c, d] := ~ ( -  1)v~xx)/'(x). (6) 
X~Cor[c,d] 

In case n = 1, definition (6) reduces to 

Af[c, d] = f(d)  - f (c)  = f (d ,  ) - f(c~ ) (7) 

and in case n = 2 to 

Af[c, d] =f(d~,  d2) - f ( d . ,  c2) - f ( c , ,  d2) +f(c~,  c2). (8) 

Moreover, let us note that  the interval function A/ i s  
additive which means  that  

[c, d] = [c <~), d ':])] O [c (2~, d (2)] and 

(C (I), d (I)) ~ (c (2), d (2)) = ~ (9) 

implies 

Af[c, d] = Af[c ~l~, d (l)] + Af[c (z), d (2)] (10) 

1937, for example) .  We finish this par t  o f  (cf. Saks, 
basic definitions by introducing the notat ion of  a gen- 
eralized sigmoidal function. 

DEFINITION 1. A bounded function a: R ~ R is called 
a generalized s igmoidal funct ion,  i f  

l i m a ( ~ ) = 0  and l ima(~)= 1. (11) 

REMARK. The  t e rm "general ized" means  that  we allow 
a to be even discont inuous in order to include percep- 
t ron-type networks, too. In these cases, the sigmoidal 
function is equal to the step function 1: R --~ {0, 1}, 
namely, 

0, ~ < 0 ,  
1(0:=  1, ~>-0. (12) 

Now, we are prepared  to introduce the hyperbolic car- 
dinal translation-type operators f2 (h). For a a generalized 
sigmoidal function, e := (1, 1 . . . . .  1) E 77 n, h @ ff~" 
given by (2), and f (h j )  E t~, 0 _< j _< J ,  the given data 
set the operator  f~(h) is defined for all x ~ [0, b] as 

f~"l(/')(x) 

:= ( -1 ) ' 2 ' - "  E ~ + ~ -  Adh j,hi+.l (13) 
jEZ n 
e~j~J 

where we agree to set 

f(hj) := 0, h i fi~ [0, b], (14) 

in order to obtain a compac t  notat ion of  the n finite 
sums appear ing in (13). Obviously, the operator  is ba- 
sically induced by the given sigmoidal function a eval- 
uated at component-wise products o f  shifted and scaled 
arguments,  so-called hyperbolic-type arguments ,  and 
the interval function A/that  makes use of  all underlying 
discrete information.  By nature, the operator  depends 
linearly on the given informat ion because A/is a linear 
functional. To get a more  precise idea of  the behaviour  
of  the operator, especially with respect to the data it 
should reproduce,  we need the following lemma.  

LEMMA 1. Using the notations and definitions given 
above we have for  all grid points hi E [0, b], 0 < i < J ,  

, / ' ( h i )  = (-1)"2'-" 
j(:_Z n 
e~j"~J 

(15) 

Proof  We only sketch the proof  for the two-dimensional 
case; the general ideas and notat ions to handle the ar- 
bi trary n-dimensional  case may  be found in Lenze 
(1989, L e m m a s  3.1 and 3.2). 
Let n = 2 and h i E [0, b] = [0, bl]  × [0, bz] be given 
arbitrarily. Because of  the special behaviour  of  the step 
function 1 and the additivity of  the interval funct ion 
A/, we obtain by splitting the sum in (15) 

! E 2 
jEZ 2 
e~j~J 

2 

=~ E 1 , + ½ - i ~  zxAh, hj+°] 
l~Jl<il 
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+½ 

+½ 

Z l k+ ½--ik Aflhl, h>,] 
il~Jl~Jl 
--1~;j2<i2 • " ~ 0  • 

2 

- I ~ j l < i  I • ,J 
i2~j2~J2 -~0 

+ ½ Z 1 k + ½ - ik &[hj, h>.] 
il~.jl~.Ji 
i2~J2~J2 = l 

= ½(&[h_,, hd + Aflh~, hj+,]) 

= ½ (f(h,) +f(hO) 

= f(h0. (16) 

Here, the last but one identity follows from the defi- 
nition of Afand the fact tha t f (h j )  = 0 for hj ~ [0, b], 
respectively, for j ~ [0, J]. • 

With the above lemma we now can formulate our 
main result. 

THEOREM 1. Using the notations and definitions 
given above we additionally assume that tr: R --~ R is a 
generalized sigmoidal function satisfying 

o'(~) = 1(~), I~1 > 2-". (17) 

Then for all grid points hi ~ [0, b], 0 -< i --< J, the 
operators fi(h) defined in (13) yield 

fith)(f)(h0 = f(hi), (18) 

that is, the operators interpolate the given data on the 
regular grid hi, 0 -< i < J. 

Proof Let hi ~ [0, b] be given arbitrarily. Because 
satisfies (17) and since 

k=Ht (Jk + ½ -- ik) > 2--" (19) 

is true for all j E 7/~ we obtain by means of Lemma 1 

- e ~ . j ~ ; J  

j ~ Z  n 

=f(h,). (20) 

With the above theorem we have finished the first 
part of our initial program, namely, we have defined 
some abstract operators that proved to interpolate the 
underlying regular gridded data. It remains to show 
how these operators are connected with three-layer 
feedforward sigma-pi neural networks. We start with a 
formal definition of these networks. 

A prototype of a three-layer feedforward sigma-pi 

neural network consists of an input layer with n fixed 
input units, a hidden layer with N so-called sigma-pi 
(or higher order) units, and an output layer with one 
single output unit. Each input unit is connected with 
all hidden units and each input signal may be multiplied 
with each possible collection of  other input signals be- 
fore weighting and further processing (weights w~ m), 
4 = R C {1, 2 . . . .  , n}, 1 < m < N). Moreover, each 
hidden unit is connected with the output unit (weights 
a (m), 1 < m < N) and has a fixed given threshold 0 (m), 
1 _< m -< N. Summing up, at the output unit the network 
answers with 

N ( ) 
OUT(x) = ~ a('ma • w(R m) I'I Xk -- 0 {m) , (21) 

m =  1 R ' # O  h E R  
RC{ 1,2 . . . . .  n} 

where a is any fixed generalized sigmoidal function (see 
also Figure 1). 

Now, in order to see that our operators (13) are really 
of type (21), we have to evaluate the product in the 
argument of a and reorganize it in terms of products 
of xk, 1 < k < n. More precisely, we have 

with 

RnS=O IOES hER 
RUSffi { 1,2 . . . . .  n } 

(22) 

the threshold given by the summation term corre- 
sponding to R = ~ ,  exceN for sign. Moreover, we have 
to enumerate our hidden units not in terms of  mul- 
tiindices but in terms of natural numbers, that is, we 
have to identify the set {j E 7/': - e  _< j _< J} with 

I 

FIGURE 1. Input layer (left), hidden layer (middle), and output 
layer (right). 
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an appropriate set {m E N: 1 ~ m _< N}. With this 
one-to-one correspondence in mind each factor 
(-1) '2~-"Af[hj, hj+~] is nothing else but one easily 
computable output weight a t") . Especially, all output 
weights together may be computed massively parallel 
by means of simultaneous sampling on the underlying 
data grid and the representation of(13) in terms of(2 i) 
is obvious. However, in view of  concrete implementa- 
tions and for reasons of complexity control we naturally 
prefer the compact hyperbolic representation (13) in- 
stead of the formal sigma-pi representation given by 
(21)-(23). 

In conclusion, we have shown that our operators may 
be interpreted as explicit ad hoc realizations of perfectly 
trained three-layer feedforward sigma-pi neural net- 
works with real-time update behaviour and manageable 
complexity. Before we now apply them to some concrete 
examples we have to add some final remarks. 

REMARKS. First, networks of  sigma-pi-type have been 
considered by various authors and have proved to be 
useful in order to recognize translation or rotation in- 
variances and higher order correlations. Without a 
claim of completeness we mention the PDP Research 
Group around Rumeihart  and McClelland (1986), 
Giles et al. (1987, 1988), and the contributions of Taylor 
and coworkers (Gorse & Taylor, 1991; Clarkson et al., 
1993; Gorse et al., 1993). In the special case of exact 
representation of Boolean functions in terms ofsigma- 
pi-type networks our results are closely related to those 
of Taylor et al. More precisely, in the deterministic case 
the pRAM-model  of Taylor can exactly simulate any 
Boolean function, in our terminology, it can interpolate 
the data in a similar way as our networks do. Second, 
in view of our definition of the network operators given 
in (13) it should be also of  interest to have some infor- 
mation on the nature of their behaviour between the 
given grid points or, in other words, on the generaliza- 
tion powers of the resulting approximation. These as- 
pects are discussed in detail in Lenze (1992, 1993) 
where even error estimates are given in case that some 
quite weak assumptions on the structure of the infor- 
mation to be simulated can be presupposed. We do not 
want to go into further details here, but would like to 
encourage the reader to take a look at the following 
examples in view of the generalization capabilities of  
our strategy. 

3. E X A M P L E S  

As already stated, we will now apply our network re- 
alizations to the so-called XOR-problem and to a spe- 
cial multigroup discriminant problem. Therefore, we 
first of  all have to face the question as to which sig- 
moidal function(s) we should use in order to generate 
our operators, respectively, networks. Because of the 
essential condition (17) a nice way to get sigmoidal 

functions of  the requested type is to start with the well- 
known B-splines (cf. Schumaker, 1981, for example) 
and integrate them. In the simplest case, let BI" R 

be the cardinal B-spline of degree l centered at the 
origin with integral equal to 1, 

1 --17"1, Iz l  ~ 1, 
Bi (T) := (24) 

O. 17"1 > 1, 

also often called hat- or roof-function. Integrating B~ 
leads to 

a(~) := B, (~)d7 

0, ~_<-1, 

½~2+~+ ,, -1 <~_<0, 
= (25) 

- ~  + ~ +  ½, 0<~_<l ,  

1, ~ > 1 .  

NOW, it may be easily checked that any scaled version 
a(~): R --~ R of a, 

a~)(~) := a(fl~), ~ @ ~, /3 > 0, (26) 

induces a differentiable sigmoidal function that satisfies 
(17) in case of/3 sufficiently large and that generates 
smooth operators defined by (13). In the following, we 
will consider the special case n = 2 and use scaling 
factors/3 = 4 (smallest/3 to guarantee interpolation in 
the two-dimensional setting),/3 = 10 (medium sized/3 
with less smooth interpolation surfaces on the one hand 
side but already larger regions of almost proper decision 
on the other hand side), and fl = o~ (nonsmooth per- 
ceptron-type network with a(~) := 1 and with largest 
regions of proper decision). In detail, our operators are 

~2(h''~(f)(x) 

"=~ k 5 - hi,  hj+~] (27)  
j~Z 2 

-e~j~J 

w i t h e : = ( l ,  I ) ~ E  2 , f l = 4 ,  10, ~ , a n d x E [ 0 ,  h]. 
As a first example, we apply our operators defined 

in (27) to the well-known XOR-problem that deals with 
one of the simplest nonlinear separable mappings (cE 
Rumelhart  & McClelland, 1986; and Hecht-Nielsen, 
1990, for the history and details of the XOR-problem). 
In the standard setting, the XOR-function maps from 
{0, l } × {0, 1 } to {0, 1 } and is defined as 

~0, xj = x 2 = 0  or x ~ = x 2 =  1, 
XOR(xl, X2 ) 

1, xl 1, x2 = 0 or x~ = 0, x2 = 1. 

(28) 

If we now want to simulate or better interpolate this 
function with our sigma-pi neural network operators 
we have to make the identifications [0, h] :-- [0, 1] × 
[0, 1], d := (1, 1), and h :-- (i ,  1) = e, and obtain 
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FIGURE 2. Interpolating XOR-surface fl~',4)(XOR)(p(u, v)). 

~("")(XOR)(x) 

- ~ ~, ~ )  k+ ½ - x k  AxoR[j,j+el. (29) 
- l ~ J t ~ l  \ k = l  
- 1 ~ ; j 2 ~ l  

The plots of(29) for ~ = 4, 10, ~ are shown in Figures 

2-4 where we have parameterized the region of interest 
[0, l] >< [0, l] with respect to the one-to-one corre- 
spondence p, 

.  3o, 

1 
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0.5 

0.2! 

40 

FIGURE 3. Interpolating XOR-surface ~("l°)(XOR)(p(u, v)). 
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FIGURE 4. Interpolating XOR-surface flt',~)(XOR)(p(u, v)). 

The XOR-surface shown in Figure 2 (3 = 4) is the 
smoothest  one and should be compared  with the one 
presented in Lapedes and Farber (1988, fig 10). In Fig- 
ure 3 (3 -- 10) the shape o f  the surface is already par- 
tially quite steep and the regions o f  the almost proper 
decision have become larger. Finally, Figure 4 shows 
the sigma-pi perceptron XOR-surface (3 = ~ )  where 
sharp edges of  discontinuity appear and all points o f  
the interval under consideration belong to a certain re- 
gion of  proper decision. At this point, it is perhaps con- 
venient to say a few words about  the solution o f  a prob- 
lem closely related to the XOR-problem,  namely, the 
so-called NXOR-prob lem,  

NXOR(Xl, x2) 

• = I I ,  x]  = x 2  = 0 or x~ =x2 = 1, 

t O, x t  = l , x 2  = 0  or xl = 0 ,  x2 = 1. (31) 

Obviously, for 3 >- 4 all functions 

~")1-I ½ - x ,  , (x,, x2) e [0,1] 2, 
\ k = l  

(32) 

give rise to proper interpolating NXOR-surfaces.  In 
other words, taking linear combinat ions  of  translations 
and dilations of  the fundamental  solution of  the 
NXOR-prob lem can be seen as the underlying basic 
mechanism that makes our general sigma-pi neural 
network operators work. 

At the end, we take a look at a special muit igroup 
discriminant problem that should be seen in loose con- 

nection with a similar one discussed in Ishibuchi, Fu- 
jioka, and Tanaka (1992). Let the discriminant function 
f." [0, 4] 2 -~  {0, 0.5, 1, 1.5, 2} be defined as 

2, x. >_ 3 and -",2 -> 3, 

1.5, (x, - 0.5) 2 + (Xz - 0.5) 2 -< 0.5, 

1, Ix~- 1.51 + I.v2-2b -< 1, 
: =  

0.5, I.x~-2.51 + Ix2 21 -< 1 and 

I.x-, 1.51 + ]x2-21 > 1, 

0, elsewhere in [0, 4]: and outside [0, 4] 2. (33) 

We set [0, b] := [0, 4] × [0, 4], d := (20, 20), and h := 
(4/20, 4/20) = 0.2e, and obtain 

~(0.2e,~(./)(x) 

_ , _ ~k AU[0.2j 0.2(j + e)]. (34) - ~  E ~c~)1-[ k+~  0.2 
- I ~ j t ~ ; 2 0  \ k = l  - -  

-- I ~j2~20 

The plots o f  the mult igroup discriminant  function 
./ 'and its interpolation-type network realizations (34) 
for 3 = 4, 10, oo are shown in Figures 5-8  where in 
these cases we have used the parameterization q, 

Because the surface parameterization has been chosen 
three times finer than the interpolation grid h i = ½0t ,  
j2), 0 _< .Jl ,j2 -< 20, the plots give a quite complete idea 

f (x , ,  x2) 
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60 

FIGURE 5. Discriminant surface f(q(u, v)). 

on how the networks generalize, respectively, extrapo- 
late on noninterpolation points. Especially, in view of 
the shape of proper decision regions, Figures 6-8 may 
be discussed in the same way as has already been done 
previously for Figures 2-4. 

4. CONCLUSIONS 

In this paper, we presented a real-time design strategy 
for three-layer feedforward sigma-pi neural networks 
with manageable complexity in the case of regular 

2 
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1 

0.! 

6O 

FIGURE 6. Interpolating discriminant surface O(°'2e'4)(f)(q(u, V)). 
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FIGURE 7. Interpolating discriminant surface [~(°'2e'l°)(f)(q(u, v)). 

training sets. We proved that the networks obtained by 
our general one-shot learning scheme interpolate the 
training data, in other words, that they perform per- 

fectly on the underlying discrete (partial) information. 
The basic idea to get the interpolation networks was to 
introduce so-called hyperbolic cardinal translation-type 

2 

1.5 

l 

0.! 

60 

FIGURE 8. Interpolating discriminant surface [Z(°'='.~)(f)(q(u, v)). 
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i n t e rpo l a t i on  opera tors  tha t  were i n d u c e d  by  special  

s igmoidal  f un c t i o n s  (key word:  in tegra ted  B-spl ines)  
and  by  s imple  l i nea r  f u n c t i o n a l s  ope ra t ing  on  the  given 
discrete i n f o r m a t i o n .  Moreover ,  the  special  s t ruc tu re  
of  the gene ra t ing  fu n c t i o n a l s  al low the  n e t w o r k  o u t p u t  

weights to be  c o m p u t e d  a n d  set s i m u l t a n e o u s l y  a n d  the  
o ther  ne twork  pa rame te r s  are d a t a - i n d e p e n d e n t  a n d  
fixed in  advance .  Final ly ,  the  ne tworks  shou ld  be o f  
in teres t  for all  app l i ca t ions  where  s igma-pi  un i t s  m a k e  
sense a n d  regular  t r a i n i n g  sets can  be  m a d e  avai lable ,  
for example ,  all aspects  o f  image  r ecogn i t i on  a n d  p ro -  
cessing. 
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