
Pergamon

CONTRIB UTED ARTICLE
0893-6080(94)E0018-G

Neural Networks, Vol. 7, No. 8, pp. 1285-1293, 1994
Copyright © 1994 Elsevier Science Ltd
Printed in the USA. All rights reserved

0893-6080/94 $6.00 + .00

How to Make Sigma-Pi Neural Networks Perform Perfectly on
Regular Training Sets

BURKHARD LENZE

Fachbereich Informatik, Fachhochschule Dortmund

(Received 9 September 1992; revised and accepted 17 January 1994)

Abstract--In this paper, we show how to design three-layer feedforward neural networks with sigma-pi units in the
hidden layer in order to perform perfectly on regular training sets. We obtain real-time design schemes based on
massively parallel sampling and induced by so-called hyperbolic cardinal translation-type interpolation operators.
The real-time nature of our strategy is due to the fact that in the neural network language our approach is nothing
else but averv general and efficient one-shot learning scheme. Moreover, because of the very special hyperbolic
structure of our sigma-pi units we do not have the usual dramatic increase of parameters and weights that in general
happens in case of higher order networks. The final networks are of manageable complexity and may be applied to
multigroup discriminant problems, pattern recognition, and image processing. In detail, the XOR-problem and a
special multigroup discriminant problem are discussed at the end of the paper.

Keywords--Feedforward sigma-pi neural networks, Hyperbolic cardinal translation-type interpolation operators,
Parallel sampling, Real-time update, One-shot learning scheme, B-splines, XOR-problem, Multigroup discriminant
problems.

1. INTRODUCTION

Since Minsky and Papert's results (1969) it is well-
known that usual feedforward neural networks with
first-order units can implement only linearly separable
mappings. One possibility to drop this limitation is to
use multilayer networks where so-called hidden units
can combine the outputs of previous units and so give
rise to nonlinear mappings (cf. Rumelhart & Mc-
Clelland, 1986; Irie & Miyake, 1988; Funahashi, 1989;
Hornik, Stinchcombe, & White, 1989; Cybenko, 1989;
Chui & Li, 1992, 1993; Light, 1992). The other way to
overcome the restriction to linear maps is to introduce
higher order units, sigma-pi units, to model nonlinear
dependences (cf. Rumelhart & McClelland, 1986; Giles
& Maxwell, 1987; Giles, Griffin, & Maxwell, 1988;
Gorse & Taylor, 1991; Gorse, Taylor, & Clarkson, 1993;
Lenze, 1992, 1993). Both modifications imply that the
complexity of the networks increase dramatically and
that standard training strategies (variants of back prop-
agation, gradient method, steepest descent, etc.) even
for small to medium sized problems often fail or are
at least very time consuming (cf. Hecht-Nielsen, 1990;

Requests for reprints should be sent to Fachbereich Informatik,
Fachhochschule Dor tmund Postfach 105018, D-44047 Dortmund,
Germany; E-mail: burkhard.lenze@fernuni-hagen.de

Saarinen, Bramley, & Cybenko, 1991 a,b). Therefore,
it should be of some interest to have real-time ad hoc
strategies for adjusting the network parameters properly
at least in the case of special situations. In the following,
such a general one-shot learning scheme will be pre-
sented for three-layer feedforward neural networks with
special hyperbolic sigma-pi units in the hidden layer
and regular training sets.

2. NOTATION AND RESULTS

Let n E I~1 be given and a = (a~, a2 a,), b = (bl,
b2 b,) E •" with a < b (i.e., ak < bk, 1 <_- k <- n)
the endpoints of the interval [a, b] C R',

[a , b] : = { x E R ' l a k < X k < b k , l<_k<n} . (1)

By means of a standard translation argument we may
assume that the point a ~ R" is always equal to the
origin, that is, without loss of generality we have a =
0. Going ahead, we choose J1, J2 J , E N and
define h @ R" componentwise by

bk
hk:=-; -, 1 < k ~ n . (2)

Jk

Now, the interval [0, b] has a regular grid with grid
points

1285

1286 B. Lenze

hj := (h j i , h2j2 h,j ,) E [0, b], (3)

O < j k < J k , 1 < - k < n ,

where j := (/1, J2 j ,) and J := (Jl , J2 J ,) .
Next, at each grid point hi, 0 < j < J , there may be
given a real value f (h j) E R that we may assume to
come from some underlying function f." [0, b] --* R.
Now, the prob lem is to design a neural network that is
able to associate with each grid point h i the right value
f (h j) . To solve this p rob lem we proceed in two steps:
in a first step, we define so-called hyperbolic cardinal
t ranslat ion-type interpolation operators that formally
interpolate the data set. In a second step, we show how
these operators can be interpreted as realizations of
usual three-layer feedforward sigma-pi neural networks.

To do the first step, we first o f all need some further
definitions that may already be found in Lenze (1989,
1992). For arbi trary c, d E R" with c < d let

C o r [c , d] : = { x E R n I X k = C k V X k = d k , 1 < k < n } (4)

be the set of corners of the interval [c, d]. Moreover, let

"y(x, c) := # { k E {1, 2 n}lxk = ck},

x E C or [c, d]. (5)

In (5) ~ denotes the n u m b e r of distinct e lements of the
set under consideration and n - 3,(x, c) is nothing else
but the well-known H a m m i n g distance of x and c (cf.
Hecht-Nielsen, 1990: 43, for example). Now, for a given
function f [c, d] --* ~ the so-called corresponding in-
terval function or i terated difference Af of f a t [c, d] is
defined by

Af[c, d] := ~ (- 1)v~xx)/'(x). (6)
X~Cor[c,d]

In case n = 1, definition (6) reduces to

Af[c, d] = f(d) - f (c) = f (d ,) - f(c~) (7)

and in case n = 2 to

Af[c, d] =f(d~, d2) - f (d . , c2) - f (c , , d2) +f(c~, c2). (8)

Moreover, let us note that the interval function A/ i s
additive which means that

[c, d] = [c <~), d ':])] O [c (2~, d (2)] and

(C (I), d (I)) ~ (c (2), d (2)) = ~ (9)

implies

Af[c, d] = Af[c ~l~, d (l)] + Af[c (z), d (2)] (10)

1937, for example) . We finish this par t o f (cf. Saks,
basic definitions by introducing the notat ion of a gen-
eralized sigmoidal function.

DEFINITION 1. A bounded function a: R ~ R is called
a generalized s igmoidal funct ion, i f

l i m a (~) = 0 and l ima(~)= 1. (11)

REMARK. The t e rm "general ized" means that we allow
a to be even discont inuous in order to include percep-
t ron-type networks, too. In these cases, the sigmoidal
function is equal to the step function 1: R --~ {0, 1},
namely,

0, ~ < 0 ,
1(0:= 1, ~>-0. (12)

Now, we are prepared to introduce the hyperbolic car-
dinal translation-type operators f2 (h). For a a generalized
sigmoidal function, e := (1, 1 1) E 77 n, h @ ff~"
given by (2), and f (h j) E t~, 0 _< j _< J , the given data
set the operator f~(h) is defined for all x ~ [0, b] as

f~"l(/')(x)

:= (-1) ' 2 ' - " E ~ + ~ - Adh j,hi+.l (13)
jEZ n
e~j~J

where we agree to set

f(hj) := 0, h i fi~ [0, b], (14)

in order to obtain a compac t notat ion of the n finite
sums appear ing in (13). Obviously, the operator is ba-
sically induced by the given sigmoidal function a eval-
uated at component-wise products o f shifted and scaled
arguments, so-called hyperbolic-type arguments , and
the interval function A/that makes use of all underlying
discrete information. By nature, the operator depends
linearly on the given informat ion because A/is a linear
functional. To get a more precise idea of the behaviour
of the operator, especially with respect to the data it
should reproduce, we need the following lemma.

LEMMA 1. Using the notations and definitions given
above we have for all grid points hi E [0, b], 0 < i < J ,

, / ' (h i) = (-1)"2'-"
j(:_Z n
e~j"~J

(15)

Proof We only sketch the proof for the two-dimensional
case; the general ideas and notat ions to handle the ar-
bi trary n-dimensional case may be found in Lenze
(1989, L e m m a s 3.1 and 3.2).
Let n = 2 and h i E [0, b] = [0, bl] × [0, bz] be given
arbitrarily. Because of the special behaviour of the step
function 1 and the additivity of the interval funct ion
A/, we obtain by splitting the sum in (15)

! E 2
jEZ 2
e~j~J

2

=~ E 1 , + ½ - i ~ zxAh, hj+°]
l~Jl<il

Sigma-Pi Neural Networks 1287

+½

+½

Z l k+ ½--ik Aflhl, h>,]
il~Jl~Jl
--1~;j2<i2 • " ~ 0 •

2

- I ~ j l < i I • ,J
i2~j2~J2 -~0

+ ½ Z 1 k + ½ - ik &[hj, h>.]
il~.jl~.Ji
i2~J2~J2 = l

= ½(&[h_,, hd + Aflh~, hj+,])

= ½ (f(h,) +f(hO)

= f(h0. (16)

Here, the last but one identity follows from the defi-
nition of Afand the fact tha t f (h j) = 0 for hj ~ [0, b],
respectively, for j ~ [0, J]. •

With the above lemma we now can formulate our
main result.

THEOREM 1. Using the notations and definitions
given above we additionally assume that tr: R --~ R is a
generalized sigmoidal function satisfying

o'(~) = 1(~), I~1 > 2-". (17)

Then for all grid points hi ~ [0, b], 0 -< i --< J, the
operators fi(h) defined in (13) yield

fith)(f)(h0 = f(hi), (18)

that is, the operators interpolate the given data on the
regular grid hi, 0 -< i < J.

Proof Let hi ~ [0, b] be given arbitrarily. Because
satisfies (17) and since

k=Ht (Jk + ½ -- ik) > 2--" (19)

is true for all j E 7/~ we obtain by means of Lemma 1

- e ~ . j ~ ; J

j ~ Z n

=f(h,). (20)

With the above theorem we have finished the first
part of our initial program, namely, we have defined
some abstract operators that proved to interpolate the
underlying regular gridded data. It remains to show
how these operators are connected with three-layer
feedforward sigma-pi neural networks. We start with a
formal definition of these networks.

A prototype of a three-layer feedforward sigma-pi

neural network consists of an input layer with n fixed
input units, a hidden layer with N so-called sigma-pi
(or higher order) units, and an output layer with one
single output unit. Each input unit is connected with
all hidden units and each input signal may be multiplied
with each possible collection of other input signals be-
fore weighting and further processing (weights w~ m),
4 = R C {1, 2 , n}, 1 < m < N). Moreover, each
hidden unit is connected with the output unit (weights
a (m), 1 < m < N) and has a fixed given threshold 0 (m),
1 _< m -< N. Summing up, at the output unit the network
answers with

N ()
OUT(x) = ~ a('ma • w(R m) I'I Xk -- 0 {m) , (21)

m = 1 R ' # O h E R
RC{ 1,2 n}

where a is any fixed generalized sigmoidal function (see
also Figure 1).

Now, in order to see that our operators (13) are really
of type (21), we have to evaluate the product in the
argument of a and reorganize it in terms of products
of xk, 1 < k < n. More precisely, we have

with

RnS=O IOES hER
RUSffi { 1,2 n }

(22)

the threshold given by the summation term corre-
sponding to R = ~ , exceN for sign. Moreover, we have
to enumerate our hidden units not in terms of mul-
tiindices but in terms of natural numbers, that is, we
have to identify the set {j E 7/': - e _< j _< J} with

I

FIGURE 1. Input layer (left), hidden layer (middle), and output
layer (right).

1288 B. Lenze

an appropriate set {m E N: 1 ~ m _< N}. With this
one-to-one correspondence in mind each factor
(-1) '2~-"Af[hj, hj+~] is nothing else but one easily
computable output weight a t") . Especially, all output
weights together may be computed massively parallel
by means of simultaneous sampling on the underlying
data grid and the representation of(13) in terms of(2 i)
is obvious. However, in view of concrete implementa-
tions and for reasons of complexity control we naturally
prefer the compact hyperbolic representation (13) in-
stead of the formal sigma-pi representation given by
(21)-(23).

In conclusion, we have shown that our operators may
be interpreted as explicit ad hoc realizations of perfectly
trained three-layer feedforward sigma-pi neural net-
works with real-time update behaviour and manageable
complexity. Before we now apply them to some concrete
examples we have to add some final remarks.

REMARKS. First, networks of sigma-pi-type have been
considered by various authors and have proved to be
useful in order to recognize translation or rotation in-
variances and higher order correlations. Without a
claim of completeness we mention the PDP Research
Group around Rumeihart and McClelland (1986),
Giles et al. (1987, 1988), and the contributions of Taylor
and coworkers (Gorse & Taylor, 1991; Clarkson et al.,
1993; Gorse et al., 1993). In the special case of exact
representation of Boolean functions in terms ofsigma-
pi-type networks our results are closely related to those
of Taylor et al. More precisely, in the deterministic case
the pRAM-model of Taylor can exactly simulate any
Boolean function, in our terminology, it can interpolate
the data in a similar way as our networks do. Second,
in view of our definition of the network operators given
in (13) it should be also of interest to have some infor-
mation on the nature of their behaviour between the
given grid points or, in other words, on the generaliza-
tion powers of the resulting approximation. These as-
pects are discussed in detail in Lenze (1992, 1993)
where even error estimates are given in case that some
quite weak assumptions on the structure of the infor-
mation to be simulated can be presupposed. We do not
want to go into further details here, but would like to
encourage the reader to take a look at the following
examples in view of the generalization capabilities of
our strategy.

3. E X A M P L E S

As already stated, we will now apply our network re-
alizations to the so-called XOR-problem and to a spe-
cial multigroup discriminant problem. Therefore, we
first of all have to face the question as to which sig-
moidal function(s) we should use in order to generate
our operators, respectively, networks. Because of the
essential condition (17) a nice way to get sigmoidal

functions of the requested type is to start with the well-
known B-splines (cf. Schumaker, 1981, for example)
and integrate them. In the simplest case, let BI" R

be the cardinal B-spline of degree l centered at the
origin with integral equal to 1,

1 --17"1, Iz l ~ 1,
Bi (T) := (24)

O. 17"1 > 1,

also often called hat- or roof-function. Integrating B~
leads to

a(~) := B, (~)d7

0, ~_<-1,

½~2+~+ ,, -1 <~_<0,
= (25)

- ~ + ~ + ½, 0<~_<l ,

1, ~ > 1 .

NOW, it may be easily checked that any scaled version
a(~): R --~ R of a,

a~)(~) := a(fl~), ~ @ ~, /3 > 0, (26)

induces a differentiable sigmoidal function that satisfies
(17) in case of/3 sufficiently large and that generates
smooth operators defined by (13). In the following, we
will consider the special case n = 2 and use scaling
factors/3 = 4 (smallest/3 to guarantee interpolation in
the two-dimensional setting),/3 = 10 (medium sized/3
with less smooth interpolation surfaces on the one hand
side but already larger regions of almost proper decision
on the other hand side), and fl = o~ (nonsmooth per-
ceptron-type network with a(~) := 1 and with largest
regions of proper decision). In detail, our operators are

~2(h''~(f)(x)

"=~ k 5 - hi, hj+~] (27)
j~Z 2

-e~j~J

w i t h e : = (l , I) ~ E 2 , f l = 4 , 10, ~ , a n d x E [0 , h].
As a first example, we apply our operators defined

in (27) to the well-known XOR-problem that deals with
one of the simplest nonlinear separable mappings (cE
Rumelhart & McClelland, 1986; and Hecht-Nielsen,
1990, for the history and details of the XOR-problem).
In the standard setting, the XOR-function maps from
{0, l } × {0, 1 } to {0, 1 } and is defined as

~0, xj = x 2 = 0 or x ~ = x 2 = 1,
XOR(xl, X2)

1, xl 1, x2 = 0 or x~ = 0, x2 = 1.

(28)

If we now want to simulate or better interpolate this
function with our sigma-pi neural network operators
we have to make the identifications [0, h] :-- [0, 1] ×
[0, 1], d := (1, 1), and h :-- (i , 1) = e, and obtain

Sigma-Pi Neural Networks 1289

1

0.75

0.5

0.2!

40

FIGURE 2. Interpolating XOR-surface fl~',4)(XOR)(p(u, v)).

~("")(XOR)(x)

- ~ ~, ~) k+ ½ - x k AxoR[j,j+el. (29)
- l ~ J t ~ l \ k = l
- 1 ~ ; j 2 ~ l

The plots of(29) for ~ = 4, 10, ~ are shown in Figures

2-4 where we have parameterized the region of interest
[0, l] >< [0, l] with respect to the one-to-one corre-
spondence p,

. 3o,

1

0.75

0.5

0.2!

40

FIGURE 3. Interpolating XOR-surface ~("l°)(XOR)(p(u, v)).

1 2 9 0 B. L e n z e

1

0.75

O.E

0.2!

40

FIGURE 4. Interpolating XOR-surface flt',~)(XOR)(p(u, v)).

The XOR-surface shown in Figure 2 (3 = 4) is the
smoothest one and should be compared with the one
presented in Lapedes and Farber (1988, fig 10). In Fig-
ure 3 (3 -- 10) the shape o f the surface is already par-
tially quite steep and the regions o f the almost proper
decision have become larger. Finally, Figure 4 shows
the sigma-pi perceptron XOR-surface (3 = ~) where
sharp edges of discontinuity appear and all points o f
the interval under consideration belong to a certain re-
gion of proper decision. At this point, it is perhaps con-
venient to say a few words about the solution o f a prob-
lem closely related to the XOR-problem, namely, the
so-called NXOR-prob lem,

NXOR(Xl, x2)

• = I I , x] = x 2 = 0 or x~ =x2 = 1,

t O, x t = l , x 2 = 0 or xl = 0 , x2 = 1. (31)

Obviously, for 3 >- 4 all functions

~")1-I ½ - x , , (x,, x2) e [0,1] 2,
\ k = l

(32)

give rise to proper interpolating NXOR-surfaces. In
other words, taking linear combinat ions of translations
and dilations of the fundamental solution of the
NXOR-prob lem can be seen as the underlying basic
mechanism that makes our general sigma-pi neural
network operators work.

At the end, we take a look at a special muit igroup
discriminant problem that should be seen in loose con-

nection with a similar one discussed in Ishibuchi, Fu-
jioka, and Tanaka (1992). Let the discriminant function
f." [0, 4] 2 -~ {0, 0.5, 1, 1.5, 2} be defined as

2, x. >_ 3 and -",2 -> 3,

1.5, (x, - 0.5) 2 + (Xz - 0.5) 2 -< 0.5,

1, Ix~- 1.51 + I.v2-2b -< 1,
: =

0.5, I.x~-2.51 + Ix2 21 -< 1 and

I.x-, 1.51 +]x2-21 > 1,

0, elsewhere in [0, 4]: and outside [0, 4] 2. (33)

We set [0, b] := [0, 4] × [0, 4], d := (20, 20), and h :=
(4/20, 4/20) = 0.2e, and obtain

~(0.2e,~(./)(x)

_ , _ ~k AU[0.2j 0.2(j + e)]. (34) - ~ E ~c~)1-[k+~ 0.2
- I ~ j t ~ ; 2 0 \ k = l - -

-- I ~j2~20

The plots o f the mult igroup discriminant function
./ 'and its interpolation-type network realizations (34)
for 3 = 4, 10, oo are shown in Figures 5-8 where in
these cases we have used the parameterization q,

Because the surface parameterization has been chosen
three times finer than the interpolation grid h i = ½0t ,
j2), 0 _< .Jl ,j2 -< 20, the plots give a quite complete idea

f (x , , x2)

Sigma-Pi Neural Networks 1291

2

1.5

I

0.!

60

FIGURE 5. Discriminant surface f(q(u, v)).

on how the networks generalize, respectively, extrapo-
late on noninterpolation points. Especially, in view of
the shape of proper decision regions, Figures 6-8 may
be discussed in the same way as has already been done
previously for Figures 2-4.

4. CONCLUSIONS

In this paper, we presented a real-time design strategy
for three-layer feedforward sigma-pi neural networks
with manageable complexity in the case of regular

2

1.5

1

0.!

6O

FIGURE 6. Interpolating discriminant surface O(°'2e'4)(f)(q(u, V)).

1292 B. Lenze

2

1.5

1

O.E

(

6O

FIGURE 7. Interpolating discriminant surface [~(°'2e'l°)(f)(q(u, v)).

training sets. We proved that the networks obtained by
our general one-shot learning scheme interpolate the
training data, in other words, that they perform per-

fectly on the underlying discrete (partial) information.
The basic idea to get the interpolation networks was to
introduce so-called hyperbolic cardinal translation-type

2

1.5

l

0.!

60

FIGURE 8. Interpolating discriminant surface [Z(°'='.~)(f)(q(u, v)).

Sigma-Pi Neural Networks 1293

i n t e rpo l a t i on opera tors tha t were i n d u c e d by special

s igmoidal f un c t i o n s (key word: in tegra ted B-spl ines)
and by s imple l i nea r f u n c t i o n a l s ope ra t ing on the given
discrete i n f o r m a t i o n . Moreover , the special s t ruc tu re
of the gene ra t ing fu n c t i o n a l s al low the n e t w o r k o u t p u t

weights to be c o m p u t e d a n d set s i m u l t a n e o u s l y a n d the
o ther ne twork pa rame te r s are d a t a - i n d e p e n d e n t a n d
fixed in advance . Final ly , the ne tworks shou ld be o f
in teres t for all app l i ca t ions where s igma-pi un i t s m a k e
sense a n d regular t r a i n i n g sets can be m a d e avai lable ,
for example , all aspects o f image r ecogn i t i on a n d p ro -
cessing.

REFERENCES

Chui, C. K., & Li, X. (1992). Approximation by ridge functions and
neural networks with one hidden layer. Journal of Approximation
Theoo' 70, 131 - 141.

Chui, C. K., & Li, X. (1993). Realization of neural networks with
one hidden layer. In K. Jetter & E Utreras (Eds.), Multivariate
approximation: From CAGD to wavelets (pp. 77-89). Singapore:
World Scientific.

Clarkson, T. G., Guan, Y., Taylor, J. G., & Gorse, D. (1993). Gen-
eralization in probabilistic RAM nets. IEEE Transactions on
Neural Networks, 4, 360-363.

Cybenko, G. (1989). Approximation by superpositions ofa sigmoidal
function. Mathematics q['Control, Signals, and Systems, 2, 303-
314.

Funahashi, K.-I. (1989). On the approximate realization of continuous
mappings by neural networks. Neural Networks, 2, 183-192.

Giles, C. L., & Maxwell, T. (1987). Learning, invariance, and gen-
eralization in high-order neural networks. Applied Optics, 26,
4972-4978.

Giles, C. L., Griffin, R. D., & Maxwell, T. (1988). Encoding geometric
invariances in higher-order neural networks. In D. Z. Anderson
(Ed.), Neural information processing systems~Natural and o'n-
thetic (pp. 301-309). New York: American Institute of Physics.

Gorse, D., & Taylor, J. G. (1991). A continuous input RAM-based
stochastic neural model. Neural Networks, 4, 657-665.

Gorse, D., Taylor, J. G., & Clarkson, T. G. (1993). Learning real-
valued functions using a hardware-implementable stochastic re-

inforcement algorithm. Contribution to The International Joint
Con[~,rence on Neural Networks (IJCNN'93), Nagoya, Japan.

Hecht-Nielsen, R. (1990). Neurocomputing. Reading, MA: Addison-
Wesley.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-
forward networks are universal approximators. Neural Networks.
2, 359-366.

Irie, B., & Miyake, S. (1988). Capabilities of three-layered perceptrons.
IEEE International Conference on Neural Networks I (pp. 641-
648). New York: IEEE Press.

Ishibuchi, H., Fujioka, R., & Tanaka, H. (1992). Possibility and ne-
cessity pattern classification using neural networks. Fuzzy Sets
and Systems. 48, 331-340.

Lapedes, A., & Farber, R. (1988). How neural nets work. In D. Z.
Anderson (Ed.), Neural information processing systems--Natural
and synthetic (pp. 442-456). New York: American Institute of
Physics.

Lenze, B. (1989). On multidimensional Lebesgue-Stieltjes convolution
operators, in C. K. Chui, W. Schempp, & K. Zeller, (Eds.), Mul-
tivariate approximation theoo, IV (pp. 225-232). ISNM 90, Basel:
Birkhiiuser Verlag.

Lenze, B. (1992). Constructive multivariate approximation with sig-
moidal functions and applications to neural networks. In D. Braess
& L. L. Schumaker (Eds.), Numerical methods of approximation
theoo' (pp. 155-175). ISNM 105, Basel: Birkh/iuser Verlag.

Lenze, B. (1993). Quantitative approximation results for sigma-pi-
type neural network operators. In K. Jetter & E Utreras (Eds.),
Multivariate approximation: From CAGD to wavelets (pp. 193-
209). Singapore: World Scientific.

Light, W. A. (1992). Ridge functions, sigmoidal functions, and neural
networks. In E. W. Cheney, C. K. Chui, & L. L. Schumaker (Eds.),
Approximation theory VII (pp. 163-206). New York: Academic
Press.

Minsky, M. L., & Papert, S. (1969). Perceptrons. Cambridge, MA:
MIT Press.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed
processing: Explorations in the microstructure of cognition. Vol-
umes I, II, Cambridge, MA: MIT Press.

Saarinen, S., Bramley, R., & Cybenko, G. (199 la). Ill-conditioning
in neural network training problems. CSRD Report, No. 1089.

Saarinen, S., Bramley, R., & Cybenko, G. (1991b). Neural networks,
backpropagation, and automatic differentiation. Preprint.

Saks, S. (1937). Theoo' qfthe integral (2nd ed.). New York: Hafner
Publishing Company.

Schumaker, L. L. (1981). Spline./imctions: Basic theory. New York:
John Wiley & Sons.

